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Abstract

In this paper, we present a high-order weighted essentially non-oscillatory (WENO) scheme for solving a multi-class

extension of the Lighthill–Whitham–Richards (LWR) model. We first review the multi-class LWR model and present

some of its analytical properties. We then present the WENO schemes, which were originally designed for computa-

tional fluid dynamics problems and for solving hyperbolic conservation laws in general, and demonstrate how to apply

these to the present model. We found through numerical experiments that the WENO method is vastly more efficient

than the low-order Lax–Friedrichs scheme, yet both methods converge to the same solution of the physical model. It is

especially interesting to observe the small staircases in the solution which are completely missed out, because of the

numerical viscosity, if a lower-order method is used without a sufficiently refined mesh. To demonstrate the applicability

of this new, efficient numerical tool, we study the multi-class model under different parameter regimes and traffic stream

models. We consider also the convergence of the multi-class LWR model when the number of classes goes to infinity.

We show that the solution converges to a smooth profile without staircases when the number of classes increases.
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AMS: 65M06; 90B20

Keywords: Multi-class LWR model; Traffic flow; Weighted essentially non-oscillatory scheme; Lax–Friedrichs scheme; Godunov

scheme
1. Introduction

Lighthill and Whitham [21] and Richards [24] independently proposed a simple continuum model, now

known as the LWRmodel, to describe the characteristics of traffic flow. In this model, a traffic stream model

(a relationship between the traffic state variables of flow, speed and density, e.g. [13]) is supplemented by the
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continuity equation of vehicles, and the resultant partial differential equation presumably could be solved to

obtain the density as a function of space and time. For a specific formofGreenshields� traffic streammodel, the

solution can be obtained analytically [31]. Although aiming to provide a coarse representation of traffic be-

havior, the LWR model is capable of reproducing qualitatively a remarkable amount of real traffic phe-

nomena, such as shock formation. Nevertheless, there are still some puzzling traffic phenomena observed on

the highway, such as the two-capacity or reverse-k state in the fundamental diagram, hysteresis of traffic flow

and platoon dispersion, that this simple LWR model cannot address or explain.

Recently, multi-class models have been developed in an attempt to explain these puzzling traffic phe-
nomena by modeling users� lane changing behavior and/or multiple vehicle types [1,6–9,14–16,32,33]. Wong

and Wong [30] formulated a multi-class model with heterogeneous drivers (MCLWR model), which was

extended from the LWR model. Although the MCLWR model is simple in nature, it was found that the

model is capable of producing the desired properties of a macroscopic traffic flow model and it explains

many puzzling phenomena, such as the two-capacity or reverse-k state, hysteresis and platoon dispersion,

but it would not be subject to other deficiencies such as wrong-way travel [5].

In [30], the MCLWRmodel was solved by a first-order Lax–Friedrichs finite difference scheme. Although

this finite difference scheme is commonly used to solve the original LWR model [18,23], it is argued that this
first-order Lax–Friedrichs scheme may produce smeared solutions near discontinuities due to excessive nu-

merical viscosity. The effect of numerical viscosity will diminishwithmesh refinement, but it will be very costly

to solve a very refined mesh. More recently, Lebacque [19] successfully applied the Godunov scheme, intro-

duced by Godunov [11], to solve the LWR model. The Godunov scheme is subject to smaller numerical

viscosity, but it requires a Riemann solver as its building block, which is very difficult, if not impossible, to

develop for the MCLWR model. This is because the multi-class model does not seem to be either genuinely

nonlinear or linearly degenerate [20]. Nevertheless, it is important to note that, even though for first-order

methods the Godunov scheme is more accurate than the Lax–Friedrichs scheme, this difference diminishes
dramatically when higher-order schemes are considered [25]. Both Godunov and Lax–Friedrichs schemes

converge to the same physical solution of themodel with a sufficiently refinedmesh. This can be proved for the

scalar and some system cases, and can be observed for more complex systems [20,25].

This paper presents the solution of the MCLWR model by a weighted essentially non-oscillatory

(WENO) scheme [17]. The WENO scheme is a very robust numerical scheme and is found to be very useful

in computational fluid dynamics as well as in other applications. The numerical results from WENO are

compared with those obtained from the first-order Lax–Friedrichs method. In the special case, when all the

eigenvalues of the kinematic wave matrix of the system (6) are positive, the Godunov solver becomes the
simple upwind solver. In this special case, we have verified that the first-order Godunov solver converges

faster than the first-order Lax–Friedrichs solver, but slower than the fifth-order WENO solver, while all

three converge to the same physical solution. In Section 2, the MCLWR model is introduced. The WENO

scheme for the MCLWR is given in Section 3. Section 4 compares the convergence characteristics of the

numerical schemes, shows the numerical solutions for different congestion regimes, and studies the as-

ymptotic case of an infinite number of classes.
2. The MCLWR model

2.1. The model

Let there be M classes of road users with different speed choice behaviors in response to the same traffic
density when traveling on a highway section. It means that for a given total density, there exists a distri-

bution of equilibrium speeds by different user classes. It is expected that the variation around the mean

speed (averaged over all user classes) decreases when traffic density increases, due to the tighter interactions
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between road users. Let qmðx; tÞ; kmðx; tÞ and umðx; tÞ be, respectively, the flow, density and speed of user class

m in the space–time domain. The total density on a highway section can then be obtained as

kðx; tÞ ¼
XM
m¼1

kmðx; tÞ: ð1Þ

The flow, density and speed variables of a particular class are subject to the following definitional relationship:

qmðx; tÞ ¼ umðx; tÞ � kmðx; tÞ 8m ¼ 1; 2; . . . ;M : ð2Þ

From the law of conservation of vehicles, each user class should satisfy the following continuity equation:

okmðx; tÞ
ot

þ oqmðx; tÞ
ox

¼ 0 8m ¼ 1; 2; . . . ;M ; ð3Þ

which describes the conservation of vehicles at any location at any time along a topographically homo-

geneous highway section without intermediate entrances or exits.

The core of the present extension is to assume that the choice of speed of a particular user class is not

only affected by the presence of this user class, but also by all other user classes on the highway. A general

form of speed–density relationship can be written as

umðx; tÞ ¼ Umðk1; k2; . . . ; kMÞ 8m ¼ 1; 2; . . . ;M : ð4Þ

For the isotropic case, the above relationship would take a simpler functional form as

umðx; tÞ ¼ UmðkÞ 8m ¼ 1; 2; . . . ;M ; ð5Þ

where k is the total density determined by Eq. (1).
Combining the above equations, the problem can be formulated into a set of partial differential equations,

okmðx; tÞ
ot

þ
XM
n¼1

cmnðx; tÞ
oknðx; tÞ

ox
¼ 0 8m ¼ 1; 2; . . . ;M ; ð6Þ

where

cmn ¼ Umdmn þ km
oUm

okn
8m; n ¼ 1; 2; . . . ;M ð7Þ

is the kinematic wave speed of user class m in response to the presence of class n users, and dmn ¼ 1 if m ¼ n;
and dmn ¼ 0 if m 6¼ n. Note that the problem stipulated in Eq. (6) reduces to the original LWR model when

M ¼ 1 (i.e., homogeneous users). The problem becomes one of solving the set of differential equation (6), or

better still the conservation form (3) with qm defined by Eq. (2) and um defined by Eq. (5), subject to certain

initial spatial and time boundary conditions. The conservation form is used because when the solution

becomes discontinuous (containing shocks or other discontinuities), the two systems (3) and (6) are not

equivalent. Thus to be on the safer side, one should always use conservative scheme to solve (3) directly.
2.2. Hyperbolicity of the system

Let k ¼ Colðk1; k2; . . . ; kMÞ be a column vector containing all M density variables in the MCLWR model.

For a smooth solution k (meaning that k has at least first-order continuous derivatives in x and t), the set of
partial differential equations (PDEs) (3) can be rewritten as
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ok

ot
þ AðkÞ ok

ox
¼ 0; ð8Þ

where AðkÞ ¼ rkqðkÞ is a kinematic wave matrix containing all the elements of cmn in Eq. (7), and

q ¼ Colðq1; q2; . . . ; qMÞ is a column vector of the flow fluxes of all classes. The system (3) is called hyperbolic

if the eigenvalues of the kinematic wave matrix AðkÞ are all real and there is a complete, linearly inde-

pendent set of eigenvectors. Hyperbolic systems are mathematically well-posed, meaning that their solu-

tions depend continuously on the initial conditions. This can be proved for the linear case and also for some

nonlinear cases. An important issue in verifying the reasonableness of a model is to check if it is hyperbolic.
We confirm that the system (3) is hyperbolic for the practical choices of traffic stream models and their

parameters. This verification is performed analytically for the two-class case and numerically for the general

M-class case to be discussed in Section 4.

For the two-class case (M ¼ 2), the kinematic wave matrix is a 2� 2 matrix given by

A ¼ U1ðkÞ þ k1U 0
1ðkÞ k1U 0

1ðkÞ
k2U 0

2ðkÞ U2ðkÞ þ k2U 0
2ðkÞ

� �
; ð9Þ

where U1ðkÞ and U2ðkÞ are defined in Eq. (5). The two eigenvalues of the kinematic wave matrix are thus

given by

k1;2 ¼ ðU1ðkÞ þ k1U 0
1ðkÞ þ U2ðkÞ þ k2U 0

2ðkÞ �
ffiffiffiffi
D

p
Þ=2; ð10Þ

where

D ¼ U1ðkÞ
��

þ k1U 0
1ðkÞ

�
� U2ðkÞ
�

þ k2U 0
2ðkÞ

��2 þ 4k1k2U 0
1ðkÞU 0

2ðkÞ: ð11Þ

Clearly D > 0 which implies that the two eigenvalues are both real and distinct. Thus the system is

hyperbolic.
We could obtain analytical formulas for the eigenvalues of the kinematic wave matrix for the three-class

or even the four-class case (M ¼ 3 or 4), however, the formulas are quite complex and it is not easy to see

whether the eigenvalues are always real. At any rate, this approach would not work for the multi-class case

with M > 4, as no analytical formulas for the eigenvalues would be available. This is a disadvantage when

compared with some other multi-class models [1,6–9,14–16,32,33], as our system is large and its hyper-

bolicity cannot be easily proven. However, this problem can be overcome as hyperbolicity can be checked

numerically.

We thus resort to implementing a numerical eigenvalue solver to verify a posteriori that the eigenvalues
are always real for all the test cases in [30] and in this paper. Indeed through all the numerical tests, non-real

eigenvalues never appear for the kinematic wave matrix. Although this is not a rigorous proof that the

MCLWR model is always hyperbolic, it at least gives validity to the numerical experiments in [30] and in

this paper as the models under all these cases are hyperbolic.

2.3. First-order traveling waves

In this section, we apply a linearization approach to demonstrate the traveling wave properties of the

MCLWR model [28]. To simplify the analysis, we also consider the simple two-class system and assume a

modified Greenshields� form of traffic stream model,

u1 ¼ uf 1 1

�
� k1 þ k2

kjam

�
and u2 ¼ uf 2 1

�
� k1 þ k2

kjam

�
; ð12Þ
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where, for Class 1 and Class 2 traffic, u1 and u2 are the traffic speeds, k1 and k2 are the densities, and uf 1 and
uf 2 are the free-flowing speeds, respectively, while kjam is the jam density of the highway. The system of

differential equations can be written as

ok1
ot

þ o u1k1ð Þ
ox

¼ 0 and
ok2
ot

þ o u2k2ð Þ
ox

¼ 0: ð13Þ

For small perturbations of densities, r and w, around the steady-state densities �kk1 and �kk2, respectively, we
can write

k1 ¼ �kk1 þ r and k2 ¼ �kk2 þ w: ð14Þ

Substituting Eq. (14) into Eq. (13) and neglecting higher-order terms, we can show that

or
ot

þ uf 1
kjam

ðkjam � 2�kk1 � �kk2Þ
or
ox

¼ uf 1�kk1
kjam

ow
ox

ð15Þ

and

ow
ot

þ uf 2
kjam

ðkjam � 2�kk2 � �kk1Þ
ow
ox

¼ uf 2
kjam

�kk2
or
ox

: ð16Þ

Eliminating w from Eqs. (15) and (16), we have

o

ot

�
þ x1

o

ox

�
o

ot

�
þ x2

o

ox

�
r ¼

�kk1�kk2uf 1uf 2
k2jam

o2r
ox2

; ð17Þ

where

x1 ¼ u1 �
�kk1uf 1
kjam

and x2 ¼ u2 �
�kk2uf 2
kjam

: ð18Þ

In Eq. (18), the left-hand side is a wave operator, which indicates that there are two first-order traveling

waves of speeds x1 and x2 in the traffic stream. It is interesting and important to note that these class-

characterized waves always travel more slowly than the fastest vehicle in the traffic stream. This lineari-
zation approach can also be generalized to any number of classes. Also note that when substituting the

modified Greenshields� form of traffic stream model (12) into Eq. (10), the eigenvalues are identical to the

traveling wave speeds shown in Eq. (18) for this two-class case, when one of the steady-state densities k1 or
k2 is equal to zero.
3. WENO numerical scheme

In recent years many high order, high resolution, numerical methods have been developed in the liter-

ature to solve a system of partial differential equations (PDEs). The main applications are in computational

fluid dynamics, but there are also applications in other physical and engineering areas. In this paper, we

apply the high-order finite difference scheme, weighted essentially non-oscillatory (WENO) scheme [2,17],
to solve the MCLWR system (3). In particular, the fifth-order WENO scheme in [17] is used. The numerical

procedure is summarized in this section. These numerical methods are found to be very useful because of

their simultaneous high-order accuracy and non-oscillatory property in the presence of shocks and other

discontinuities or sharp gradient regions in the solution, or, in general, for convection dominated problems.

For more details of such methods, see Shu [25,26].
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We now describe the computational procedure of the fifth-order WENO scheme. Spatial discretization is

discussed first. We start from the simple case of a scalar equation (3), i.e., a one-class model, and assume

oqðkÞ=okP 0, i.e., the wind direction is positive. More general cases will be described later. The compu-

tational domain is discretized into a uniform mesh of J grid points:

xj ¼ jDx; j ¼ 1; 2; . . . ; J ; ð19Þ

where Dx is the uniform mesh size on the spatial axis. A smooth non-uniform mesh could also be used to

concentrate grid points near certain regions to obtain better resolution. A conservative numerical ap-

proximation kjðtÞ to the exact solution kðxj; tÞ of (3) satisfies the following ordinary differential equation

(ODE) system:

dkjðtÞ
dt

þ 1

Dx
q
_

jþ1=2

�
� q

_

j�1=2

	
¼ 0; ð20Þ

where q
_

jþ1=2 is called the numerical flux, whose design is the key ingredient for a successful scheme. For the

fifth-order WENO scheme, the numerical flux q
_

jþ1=2 is defined as follows:

q
_

jþ1=2 ¼ t1q
_ð1Þ

jþ1=2 þ t2q
_ð2Þ
jþ1=2 þ t3q

_ð3Þ
jþ1=2; ð21Þ

where q
_ðpÞ

jþ1=2 are the three third-order fluxes on three different stencils given by

q
_ð1Þ
jþ1=2 ¼

1

3
qj�2 �

7

6
qj�1 þ

11

6
qj; ð22aÞ
q
_ð2Þ
jþ1=2 ¼ � 1

6
qj�1 þ

5

6
qj þ

1

3
qjþ1; ð22bÞ
q
_ð3Þ
jþ1=2 ¼

1

3
qj þ

5

6
qjþ1 �

1

6
qjþ2; ð22cÞ

where qj is a short notation to denote qðkjðtÞÞ, and the nonlinear weights tp are given by

tp ¼
~ttpP3

l¼1 ~ttl
; ~ttl ¼

cl
ðeþ blÞ

2
; ð23Þ

where e is a parameter to prevent the denominator from becoming 0 and is fixed at e ¼ 10�6 in all the

computations in this paper. The choice of e does not affect accuracy: the numerical errors can go much
lower than e, reaching machine zeros (around 10�13 for double precision). In Eq. (23), the linear weights cl
are given by

c1 ¼
1

10
; c2 ¼

3

5
; c3 ¼

3

10
ð24Þ

and the smoothness indicators bl given by

b1 ¼
13

12
ðqj�2 � 2qj�1 þ qjÞ2 þ

1

4
ðqj�2 � 4qj�1 þ 3qjÞ2; ð25Þ
b2 ¼
13

12
ðqj�1 � 2qj þ qjþ1Þ2 þ

1

4
ðqj�1 � qjþ1Þ2; ð26Þ
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b3 ¼
13

12
ðqj � 2qjþ1 þ qjþ2Þ2 þ

1

4
ð3qj � 4qjþ1 þ qjþ2Þ2: ð27Þ

We remark that the stencil for the scheme is biased to the left because of the positive wind direction.
This finishes the description of the fifth-order finite difference WENO scheme [17] for the scalar

equation with a positive wind direction. As we can see, the algorithm is actually quite straightforward

and there are no parameters to be tuned in the scheme. The main reason that it works well, both for

smooth solutions and for solutions containing shocks or other discontinuities or high gradient regions,

is that the nonlinear weights, determined by the smoothness indicators, are automatically adjusting

themselves, based on the numerical solution, to use the locally smoothest information given by the

solution. We refer to [2,17,25,26] for accuracy tests and computational fluid dynamics simulations using

this method.
If the ‘‘wind direction’’ oqðkÞ=ok6 0, the procedure for computing the numerical flux q

_

jþ1=2 is a mirror

image with respect to the point xjþ1=2, of what is described above. The stencil would then be biased to the

right. If oqðkÞ=ok changes sign, we will use smooth flux splitting

qðkÞ ¼ qþðkÞ þ q�ðkÞ; ð28Þ

where oqþðkÞ=okP 0 and oq�ðkÞ=ok6 0, and apply the above procedures separately on each one of them.

There are many choices of such flux splitting, however the most popular one is the Lax–Friedrichs flux

splitting where

q�ðkÞ ¼ 1

2
ðqðkÞ � akÞ; ð29Þ

with a ¼ maxk joqðkÞ=okj.
For hyperbolic systems of conservation laws (3), the eigenvalues of AðkÞ are all real:

k1ðkÞ6 � � � 6 kMðkÞ: ð30Þ

A safe but rather expensive way to generalize scalar schemes to such system cases is to utilize local

characteristic decompositions, see [25] for details. However, such a procedure depends on the explicit

formulas for the eigenvectors of AðkÞ, which are not easy to obtain for the MCLWR model when

M P 3. We have thus adopted a simpler, component-wise generalization, namely using the Lax–

Friedrichs flux splitting (29) for each equation in the system, with a common a. Ideally, a should be

chosen as the largest (absolute value) eigenvalue in (30), however closed form formulas for the ei-

genvalues (30) are also difficult to obtain for the MCLWR model when M P 3. We have thus chosen a
as

a ¼ max ju1j; . . . ; jumjð Þ; ð31Þ

where the speeds um are defined in Eq. (5). Numerical experiments in the following section indicate that this

works well for the MCLWR model.

For the time discretization, the computational domain is discretized into a mesh of N grid points:

t½n� ¼ t½n�1� þ Dt½n�; n ¼ 1; 2; . . . ;N , where Dt½n� is the mesh size on the time axis. We adopt the third-order

TVD Runge–Kutta method [27]:

kð1Þ ¼ k½n� þ Dt½n�Lðk½n�; t½n�Þ; ð32aÞ
kð2Þ ¼ 3

4
k½n� þ 1

4
kð1Þ þ 1

4
Dt½n�Lðkð1Þ; t½n� þ Dt½n�Þ; ð32bÞ
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k½nþ1� ¼ 1

3
k½n� þ 2

3
kð2Þ þ 2

3
Dt½n�L

�
kð2Þ; t½n� þ 1

2
Dt½n�

	
; ð32cÞ

where L is the approximation to the spatial derivatives:

Lðk; tÞ ¼ � 1

Dx

�
q
_

jþ1=2 � q
_

j�1=2

	
� � oqðkÞ

ox
ð33Þ

established by the WENO procedure outlined above. This time discretization is proved stable if the first-

order Euler forward time stepping of the spatial operator is stable [12,27]. Note that this time discretization

is very simple and consists of convex combinations of three first-order Euler forward steps. A CFL con-

dition is needed for stability:

a½n�
Dt½n�

Dx
6CFL; ð34Þ

where a½n� should be taken as the largest (absolute value) eigenvalue in (30) for time level n, but for the

MCLWR model it is taken as that in (31) instead. CFL should be less than one for stability and in our

computation it is taken as 0.6.
4. Computational experiments

In this section, we present our computational experiments of the MCLWR model using the high-order

WENO scheme, and compare the results with other numerical schemes.

4.1. Traveling wave speeds

We start with a two-class model with the modified Greenshields� form of traffic stream model as in

Eq. (12). Consider a highway 2 km long with an initial platoon of maximum density 40 veh/km as

shown in Fig. 1. The left boundary has no inflow (density equals 0) for all time, and the right boundary
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Fig. 1. Initial density platoon on the example highway.
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is a free outflow (Neumann boundary condition). The free-flowing speeds of Class 1 and Class 2 drivers

are 60 and 120 km/h, respectively. We assume an equal distribution of drivers in the platoon. The jam

density of the highway is 200 veh/km. The dispersion of the platoon at time 0.01 h is shown in Fig. 2.

It is interesting to note that the solution forms two uniform density platforms or staircases (to be

discussed later) each of which contains only a single class of driver. The widths of the platforms are

marked by points A, B, C and D in the figure, with the platform A–B containing Class 1 drivers only,

and the platform C–D containing Class 2 drivers only. In Fig. 3, we show the speed trajectories of

these points, A, B, C and D, which numerically measure the wave speeds, together with the values
obtained from the eigenvalue formulas (10) and those given by the linearized formulas (18). The result

shows that the linearized wave speeds give reasonable predictions of actual nonlinear wave speeds in

this case.
4.2. Convergence study of the numerical methods

For a nonlinear system (3) with possible shocks and other discontinuities, it is not possible to prove

mathematically that the WENO scheme, or any other scheme, converges. However, experience from

computational fluid dynamics indicates that the WENO scheme is very robust and always converges for

hyperbolic systems. We would like to verify through numerical experiments the convergence of the WENO

scheme for the MCLWR model in this subsection.

For this purpose, we take Experiment 2 in [30] as our test case. Other test cases have also been exper-
imented with, yielding similar results. In this experiment, we consider the same highway section and initial

density platoon as that in Section 4.1, but with the number of driver classes increased to M ¼ 9. The traffic

stream model takes the modified Drake�s form [10] as

um ¼ UmðkÞ ¼ ufm expð�ðk=k0Þ2=2Þ; m ¼ 1; 2; . . . ;M : ð35Þ
Fig. 2. The dispersion of platoon at time t ¼ 0:01 h.
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The free flowing speeds ufm of these drivers are taken as 60:0; 67:5; 75:0; . . . ; 120:0 km/h, and the optimal

density k0 ¼ 50 veh/km. The distribution in density for these user classes is given by Fig. 4. The left

boundary has no inflow (density equals 0) for all time, and the right boundary is a free outflow (Neumann

boundary condition). We plot the density at t ¼ 0:015 h to verify numerical convergence.
Fig. 4. Distribution of drivers in the platoon.
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We first plot, in Fig. 5, top left, the total density computed with the first-order Lax–Friedrichs

scheme (described in detail in [30]) using 6400 grid points (solid line), versus that computed with the

fifth-order WENO scheme using 100 grid points (circles). They overlay each other quite well, indicating

two things:

1. The resolution of the first-order Lax–Friedrichs scheme with 6400 points is similar to that of the fifth-

order WENO scheme with 100 points. Thus the high-order WENO scheme is vastly more efficient than

the first-order Lax–Friedrichs scheme for this test case.

2. If one uses only a first-order scheme to compute, one might decide prematurely that this is a convergent
solution, since 6400 points make a very refined mesh.

In fact, the solution in Fig. 5, top left, is not a convergent one numerically, although the solution is

good enough to demonstrate the physical characteristics of the traffic model. Nevertheless, in this paper,
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Fig. 5. Density versus distance at t ¼ 0:015 h. Top left: Comparison between first-order Lax–Friedrichs with 6400 points (solid line)

and WENO with 100 points (circles); Top right: Convergence of WENO with 100 points (dash-dot line), 400 points (dashed line) and

1600 points (solid line); Bottom left: Convergence of first-order Lax–Friedrichs with 400 points (dash-double dots line), 1600 points

(dash-dot line), 6400 points (dashed line) and 25,600 points (solid line); Bottom right: Comparison between first-order Lax–Friedrichs

with 25600 points (solid line) and WENO with 400 points (circles).
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we study the numerical convergence characteristics of the traffic model in greater detail. In Fig. 5, top

right, we plot the WENO solutions using 100 points (dash-dot line), 400 points (dashed line) and 1600

points (solid line). We can see that the solution has observable differences for all these grids (the dif-

ference between the 400 points and 1600 points results is small but still noticeable, especially when en-

larged near the staircases). In particular, notice the small staircases in the increasing part of the solution.

There are nine such small staircases, clearly related to the nine user classes. These staircases are actually

shocks in different characteristic fields. The coarse mesh (100 points) WENO solution and most of the

first-order Lax–Friedrichs solutions completely miss these staircases because of the excessive numerical
dissipation. To verify that the numerical solution is indeed convergent, we have also computed it using

WENO with 3200 grid points. The solution (not shown) completely overlays that with 1600 grid points,

indicating that the WENO solution with 1600 grid points can be considered a numerically convergent

solution.

In Fig. 5, bottom left, we plot the first-order Lax–Friedrichs solutions using 400 points (dash-double

dot line), 1600 points (dash-dot line), 6400 points (dashed line) and 25,600 points (solid line). We can see

that the solution does eventually converge with grid refinements, however, such convergence is very slow

and one needs a huge number of grid points (in this case 25,600 points) to see the staircases. To convince
the reader that both the WENO scheme and the Lax–Friedrichs scheme converge to the same solution, in

Fig. 5, bottom right, we plot the WENO solution using 400 points (circles) and the Lax–Friedrichs

solution using 25,600 points (solid line). They overlay each other quite well, both showing the small

staircases.

In Fig. 6, left, we plot the total density as a function of spatial location, for various times,

t ¼ 0; 0:005; 0:010; . . . ; 0:025 h. We can clearly see the evolution of the dispersion of the back of the platoon

and the appearance of staircases. In Fig. 6, right, we plot the flow (defined as the sum of the fluxes in (2)

over all M classes) as a function of time, t, at various spatial locations, x ¼ 0:2; 0:4; 0:6; . . . ; 2:0 km. We can
clearly see that the small staircases are also present in these flow plots. The occurrence of these small

staircases in the model results is quite consistent with the flow oscillation phenomenon that was directly

observed on long homogeneous freeways [3,4,22,29]. The results in Fig. 6 are obtained using WENO with
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1600 grid points, which overlays well the WENO results using 3200 grid points (not shown here), indicating

that they are reliable, numerically convergent solutions of the nine-class model.

To assure the reader that these staircases are not numerical artifacts of the WENO schemes, we plot in

Fig. 7 the total density as a function of spatial location, for various times, t ¼ 0; 0:005; 0:010; . . . ; 0:030 h,

using the nine-class model but with ufm ¼ 90 km/h for all nine classes. Clearly this returns to a single user

model and the solution is now free from the staircases. The results in Fig. 7 are obtained using WENO

schemes with 1600 grid points, which overlay the WENO results using 3200 grid points (not shown here),

indicating that they are reliable, numerically convergent solutions. Note that a single user model is the
original LWR model, which shows no dispersion behavior, as revealed by the figure.

In summary, in this section we have shown that

1. Using the fifth-order WENO scheme is vastly more efficient than using the first-order Lax–Friedrichs

scheme, saving, by a factor of 64, on the number of mesh points needed to reach the same resolu-

tion;

2. One must be very careful in performing the grid refinement study to verify numerical convergence, for

otherwise one might miss some very important solution features, such as the staircases, which might

otherwise be completely obscured by numerical dissipation.
3. Both the high-order WENO scheme and the low-order Lax–Friedrichs scheme eventually converge to the

same physical solution with grid refinements.

Finally in this section, we point out that we have verified a posteriori, by a numerical eigenvalue solver,

that all the eigenvalues of the kinematic wave matrix stay non-negative during the time evolution. We

remark that this is true only for this case and not in general for cases in the following section. For this

special case, it is straightforward to write out the first-order Godunov scheme, which coincides with the

simple upwind scheme (using backward difference to approximate the spatial derivatives). In Fig. 8, we

show the convergence history as well as the density and flow graphs computed by the first-order Godunov
scheme. We can clearly see that the resolution of the first-order Godunov scheme is better than that of the

first-order Lax–Friedrichs scheme but worse than that of the fifth-order WENO scheme. Moreover, the
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652 M. Zhang et al. / Journal of Computational Physics 191 (2003) 639–659
first-order Godunov scheme converges to the same solution as the other two schemes, when we overlay the

solutions (not shown here).

The first-order Godunov scheme has merit in that it is computationally fast. However, the clocked

times (shown in Table 1) for both the fifth-order WENO code and the first-order upwind code (Godunov

in the special case of all positive eigenvalues), which achieve the same resolution, still favor the WENO

scheme. Clearly the advantage of the simple and fast computation of the first-order Godunov scheme is

offset by the use of more grid points to achieve higher accuracy. Although the per grid point cost of the

WENO scheme is much higher than that of the first-order Godunov scheme, it is possible to code WENO
to minimize the cost. This, in combination of the drastic reduction of space–time grids when using the

WENO scheme rather than the Gudunov scheme, renders the total computational cost comparison for a

fixed resolution to favor the WENO scheme as shown in Table 1. We also point out again that the

Godunov scheme for this problem is very difficult, if not impossible, to obtain when the eigenvalues

change sign.



Table 1

CPU times for the first-order Godunov scheme and the fifth-order WENO scheme at the same level of accuracy for the nine-class

model in Section 4.2 (on a SunBlade 1000 workstation)

First-order Godunov (s) Fifth-order WENO (s)

nx ¼ 1600 nx ¼ 200

t ¼ 0:1 h 20 4

t ¼ 0:2 h 39 8

nx ¼ 6400 nx ¼ 800

t ¼ 0:1 h 376 71

t ¼ 0:2 h 722 138
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4.3. Numerical experiments for different congestion regimes and traffic stream models

In this section, we perform more numerical experiments, using the WENO scheme with 1600 grid points

(which gives numerically convergent solutions for all example calculations presented here), with different

model characteristics for the MCLWRmodel. We still use the nine-class model with the density distribution

given by Fig. 4, but we consider the following four cases:
1. The initial density distribution represents a platoon in the non-congested regime, as given in Fig. 1. The

traffic stream model takes the modified Drake�s form (35). This case has already been considered in the

previous section.

2. The initial density distribution represents a platoon in the congested regime, as given in Fig. 9, which has

a higher maximum initial density value of 120 veh/km. The traffic stream model is identical to that in

Case 1.

3. The initial density distribution represents a platoon in the non-congested regime, as given in Fig. 1. The

traffic stream model takes the modified Greenshields� form (36) with a jam density of kjam ¼ 200 veh/km,

um ¼ UmðkÞ ¼ ufm 1
�

� k=kjam
�
; m ¼ 1; 2; . . . ;M : ð36Þ
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Fig. 9. Initial platoon with density at the high density regime.
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4. The initial density distribution represents a platoon in the congested regime, as given in Fig. 9. The traffic

stream model is identical to that in Case 3.

The density versus distance plots for various times, and the flow versus time plots for various spatial

locations, are given in Figs. 6, 10, 11 and 12, respectively, for these cases. It is clear from these figures that
dispersion at the tail of the platoon is limited until its density value has dropped to near or below certain

critical values. These values are the optimal densities given by the Drake�s and Greenshields� traffic stream
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models used. They are related to the capacity or maximum flow of the highway being analyzed. A given

highway is described as operating at a congested or non-congested state when the density of the traffic

stream is above or below the optimal density of the highway, respectively.

We first look at Fig. 6 for the modified Drake�s model. The optimal density, k0, is set to be 50 veh/km
for this model. Initially the density of the platoon is below the optimal density and therefore the highway

is not congested. As a result vehicles in the nine different classes are free to overtake and move as desired,

and the platoon disperses as depicted in the figure. The second case for Drake�s model is an initial

platoon of density 120 veh/km, much greater than the highway�s optimal density. This time the highway

is operating in a congested state and this results in a non-dispersed tail of the platoon because overtaking

is limited in such a congested state. The front of the platoon still can disperse because the downstream

end is empty. Vehicles at the tail of the platoon however have to wait until the density drops near to or

below the optimal density. They are then free to disperse again when the highway is operating in a non-
congested state.

Figs. 11 and 12 represent similar cases to Figs. 6 and 10, but with the modified Drake�s model replaced

by the modified Greenshields� model. The optimal density of the modified Greenshields� model is given by

k0 ¼ kjam=2. Since kjam is set to be 200 veh/km the optimal density is therefore equal to 100 veh/km. Similar

results are obtained with the modified Greenshields� model. When the initial platoon has a density less than

the optimal density, dispersion occurs throughout the analysis (Fig. 11). If the platoon is initially congested

with a density value above the optimal, dispersion is limited (Fig. 12). Only when the density of the platoon

drops back to near or below the optimal density can vehicles overtake easily and the dispersion behavior
becomes clear.

4.4. Infinite number of driver classes

We might wonder what physical meaning the small staircases carry in the nine-class model. By com-

puting with different number of classes we have observed that the number of staircases is always equal to

the number of classes (this corresponds to the different wave speeds of the different combinations of

classes), and the strength of those staircases decreases with the number of classes.
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We could thus consider an asymptotic case when the number of classes goes to infinity. The model (3)

then becomes again a scalar equation but with one more independent variable v, corresponding to the

distribution of driver classes. It reads

okðx; t; vÞ
ot

þ oqðx; t; vÞ
ox

¼ 0; v 2 ½vmin; vmax� ð37Þ

with the numerical flux given by

qðx; t; vÞ ¼ vkðx; t; vÞ expð�ðkðx; tÞ=k0Þ2=2Þ for modified Drake’s form ð38Þ

and

qðx; t; vÞ ¼ vkðx; t; vÞð1� kðx; tÞ=kjamÞ for modified Greenshields’ form: ð39Þ

Other forms of traffic stream models can be considered in similar fashion. The boundary conditions are

now set as a function of the class variables v 2 ½vmin; vmax�. We remark that this continuous model has some

similarity with the kinetic models, however no relaxation is involved and this can be considered as a re-

laxed, equilibrium model. The main difference is that, while the conventional kinetic models consider a

distribution of non-equilibrium speed around an equilibrium value, our model assumes a continuous dis-

tribution of equilibrium speed.
As example calculations, we assume a modified Drake�s form of traffic stream model, as in Eq. (38), with

k0 ¼ 50 veh/km, and an initial platoon of maximum density 40 veh/km as shown in Fig. 1. The distribution

of k everywhere in the platoon, as a function of v, follows a continuous curve in the shape of Fig. 13, left,

which, when discretized using nine points in v, and suitably scaled, gives the original Fig. 4. Thus, the

M-class model can be considered as a discretization of the continuous model (37) in the v variable. To

demonstrate that the solutions from the M-class model converge to those of the continuous model (37), we

plot the nine-class, 21-class and 41-class density versus distance graphs at t ¼ 0:015 h, in Fig. 13, right,

using WENO with 1600 points, which gives numerically convergent solutions. We can clearly see that the
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solutions converge to smooth curves without staircases when the number M of classes increases. There is

not much noticeable difference when M increases beyond 41. In Fig. 14, we plot the density versus distance

for various times on the left, and the flow versus time for various spatial locations on the right, for the
continuous model (37) demonstrated by the M ¼ 41 class model. It is interesting to note that a nice platoon

dispersion behavior is observed for this continuous model.
5. Discussions and conclusions

The study of traffic flow using a macroscopic approach often involves a single conservation law, or a

system of conservation laws that are, in general, of hyperbolic type. The scalar LWR model and those
higher-order continuum models proposed so far contain hyperbolic partial differential equations. Care

must be taken in solving these PDEs using numerical methods due to the existence of singularities and

multiple solutions. Fortunately much work on numerical methods for hyperbolic PDEs has been carried

out in the field of Computational Fluid Mechanics (CFD), which can also be applied to traffic flow

problems. In this paper, we applied one of the state-of-the-art methods called weighted essentially non-

oscillatory (WENO) scheme to obtain solutions for a recently proposed MCLWR model in [30]. The

results of a series of numerical tests are encouraging and interesting. Several conclusions can be drawn.

First, for the two-class model, the derived linearized wave speeds give reasonable predictions of the
actual nonlinear wave speeds. Analysis using linearization on the MCLWR model also demonstrated that

for this two-class case the class-characterized waves never travel faster than the fastest vehicle in the

traffic stream.

Second, the fifth-order WENO scheme has been implemented to solve the MCLWR model and it is more

efficient than the first-order Lax–Friedrichs scheme and the first-order Godunov scheme. The high-order

WENO needs fewer grid points than the first-order methods to obtain solutions of the same accuracy. The

reduction factor is around 64 for the Lax–Friedrichs scheme and 8 for the Godunov scheme. We remark

that the WENO scheme that is studied in this paper is just a representative of high order, high resolution
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schemes. Other high order, high resolution schemes may also work well on this traffic model, but we do not

study them in this paper.

Third, from the convergence study of the numerical methods used in this paper, for first-order schemes,

it might be premature to accept that a solution is converged, unless a very refined mesh (e.g., 25,600 points

for the Lax–Friedrichs scheme) is used. Convergent solutions of the evolution of initial platoons of vehicles

show that the MCLWR model produces dispersed platoons with staircase-like steps. We found that the

number of steps is equal to the number of classes in the traffic stream. Linearized analysis of the two-class

model in Section 2 shows that there exist two class-characterized waves, which can also be generalized to
the M-class model that there would be M different class-characterized waves traveling in the traffic stream.

The speed of each wave is characterized by the class-specific parameters in the MCLWR model. It is be-

lieved that the formation of staircase is caused by these class-characterized waves in the traffic stream. For

the two-class test case, each staircase is composed of one class of driver only. However, this exclusivity

property does not generally apply for the cases with greater number of classes.

Finally, we have extended the MCLWR model to include a continuous equilibrium speed distribution.

Thus the M-class model can be considered as a discretization of this continuous model. It has been shown,

by increasing M , that the continuous model can predict platoon dispersion behavior without the staircases
observed in the discrete M-class model. This is quite realistic as the actual equilibrium speed distribution

might be expected to be continuous in general. The actual distribution function has yet to be determined

from field data; however the underlying philosophy of the MCLWR model will not change.
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